A weighted least squares finite element method for elliptic problems with degenerate and singular coefficients

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A weighted least squares finite element method for elliptic problems with degenerate and singular coefficients

We consider second order elliptic partial differential equations with coefficients that are singular or degenerate at an interior point of the domain. This paper presents formulation and analysis of a novel weighted-norm least squares finite element method for this class of problems. We propose a weighting scheme that eliminates the pollution effect and recovers optimal convergence rates. Theor...

متن کامل

On the finite element method for elliptic problems with degenerate and singular coefficients

We consider Dirichlet boundary value problems for second order elliptic equations over polygonal domains. The coefficients of the equations under consideration degenerate at an inner point of the domain, or behave singularly in the neighborhood of that point. This behavior may cause singularities in the solution. The solvability of the problems is proved in weighted Sobolev spaces, and their ap...

متن کامل

Least-squares hp/spectral element method for elliptic problems

The solution of elliptic boundary value problems often leads to singularities due to nonsmoothness of the domains on which the problem is posed. This paper studies the performance of the nonconforming hp/spectral element method for elliptic problems on non smooth domains. This paper deals with monotone singularities of type rα and rα log r as well as the oscillating singularities of type rα sin...

متن کامل

A Splitting Least-squares Mixed Finite Element Method for Elliptic Optimal Control Problems

In this paper, we propose a splitting least-squares mixed finite element method for the approximation of elliptic optimal control problem with the control constrained by pointwise inequality. By selecting a properly least-squares minimization functional, we derive equivalent two independent, symmetric and positive definite weak formulation for the primal state variable and its flux. Then, using...

متن کامل

A mortar element method for elliptic problems with discontinuous coefficients

This paper proposes a mortar finite element method for solving the two-dimensional second-order elliptic problem with jumps in coefficients across the interface between two subregions. Non-matching finite element grids are allowed on the interface, so independent triangulations can be used in different subregions. Explicitly realizable mortar conditions are introduced to couple the individual d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics of Computation

سال: 2012

ISSN: 0025-5718,1088-6842

DOI: 10.1090/s0025-5718-2012-02659-7